EQVIC VO 至利 ID MODEM	文档版本	密级
F2X16 V2 系列 IP MODEM 使用说明书	V1. 0. 2	
医角斑奶门	产品名称: F2X16 V2	共 31 页

F2X16 V2 系列 IP MODEM 使用说明书

此说明书适用于下列型号产品:

型号	产品类别	
F2116 V2	GPRS IP MODEM	
F2A16 V2	LTE IP MODEM	
F2C16 V2	Cat.1 IP MODEM	

客户热线: 400-8838-199 电话: +86-592-6300320 传真: +86-592-5912735

网址: www.four-faith.com

地址:厦门集美软件园三期 A06 栋 11 层

文档修订记录

日期	版本 说明		作者
2020-02-24	V1.0.0	初建	ZDM
2020-04-16	V1.0.1	更新输入电源范围和产品图片	ZDM
2020-05-12	V1.0.2	增加 F2C16 型号	ZCL

著作权声明

本文档所载的所有材料或内容受版权法的保护,所有版权由厦门四信通信科技有限公司拥有,但注明引用其他方的内容除外。未经四信公司书面许可,任何人不得将本文档上的任何内容以任何方式进行复制、经销、翻印、连接、传送等任何商业目的的使用,但对于非商业目的的、个人使用的下载或打印(条件是不得修改,且须保留该材料中的版权说明或其他所有权的说明)除外。

商标声明

Four-Faith、四信、「Our-Faith」、Four-Faith 以前, 均系厦门四信通信科技有限公司注册商标,未经事先书面许可,任何人不得以任何方式使用四信名称及四信的商标、标记。

注: 不同型号配件和接口可能存在差异, 具体以实物为准。

目录

第一章	产品简介	6
1.1	产品概述	(
1.3	工作原理框图	7
1.4	产品规格	8
第二章	安装	. 10
2.1	概述	. 10
2.2	开箱	10
2.3	安装与电缆连接	10
2.4	电源说明	13
2.5	指示灯说明	13
第三章	参数配置	14
3.1	配置连接	14
3.2	参数配置方式介绍	14
3.3	参数配置详细说明	14
	3.3.1 配置工具运行界面	15
	3.3.2 设备上电	16
	3.3.4 中心服务	22
	3.3.5 串口	23
	3.3.6 无线拔号	24
	3.3.7 全局参数	26
	3.3.8设备管理	27
	3.3.9 其它功能项	28
第四章	数据传输试验环境测试	29
4.1	试验环境网络结构	29
4.2	测试步骤	29

第一章 产品简介

1.1 产品概述

F2X16 V2 系列 IP MODEM 是一种物联网无线数据终端,利用公用蜂窝网络为用户提供无

线长距离数据传输功能。

该产品采用高性能的工业级 32 位通信处理器和工业级无线模块,以嵌入式实时操作系统为软件支撑平台,同时提供 RS232 和 RS485 接口,可直接连接串口设备,

实现数据透明传输功能;低功耗设计;提供1路 ADC,2路 I/O,可实现数字量输入输出、脉冲输出、模拟量输入、脉冲计数等功能。

该产品已广泛应用于物联网产业链中的 M2M 行业,如智能电网、智能交通、智能家居、金融、移动 POS 终端、供应链自动化、工业自动化、智能建筑、消防、公共安全、环境保护、 气象、数字化医疗、遥感勘测、军事、空间探索、农业、林业、水务、煤矿、石化等领域。IP MODEM 典型应用如图 1-1 所示:

图 1-1 IP MODEM 应用拓扑图

工业级应用设计

- ◆ 采用高性能工业级无线模块
- ◆ 采用高性能工业级 32 位通信处理器
- ◆ 低功耗设计,支持多级休眠和唤醒模式,最大限度降低功耗
- ◆ 采用金属外壳,保护等级 IP30。金属外壳和系统安全隔离,特别适合于工控现场的应 田
- ◆ 宽电源输入(DC 5~36V)

稳定可靠

- ◆ WDT 看门狗设计,保证系统稳定
- ◆ 采用完备的防掉线机制,保证数据终端永远在线

6/31

- ◆ RS232/RS485 接口内置 15KV ESD 保护
- ◆ SIM/UIM 卡接口内置 15KV ESD 保护
- ◆ 电源接口内置反相保护和过压保护
- ◆ 天线接口防雷保护(可选)

标准易用

- ◆ 采用工业端子接口,特别适合于工业现场应用
- ◆ 提供 1 路标准 RS232 和 1 路标准 RS485 接口(或 2 路标准 RS232),可直接连接串口设备
- ◆ 可定制 TTL 电平串口,可定制 ADC
- ◆ 智能型数据终端,上电即可进入数据传输状态
- ◆ 提供功能强大的中心管理软件,方便设备管理(可选)
- ◆ 使用方便,灵活,多种工作模式选择
- ◆ 方便的系统配置和维护接口
- ◆ 支持串口软件升级和远程维护

功能强大

- ◆ 支持 TCP server 功能,可同时支持 4 个 TCP 连接(可选)
- ◆ 支持双数据中心备份传输及多数据中心同步传输(5个数据中心)
- ◆ 提供2路I/O,可实现2路数字量输入输出;可定制2路脉冲输出、2路模拟量输入、 2路脉冲计数功能;1路模拟量采集(电流采集)
- ◆ 支持多种上下线触发模式,包括短信、电话振铃、串口数据触发上下线模式
- ◆ 支持根据域名和 IP 地址访问中心
- ◆ 内嵌标准的 TCP/IP 协议栈,支持透明数据传输
- ◆ 支持 APN/VPDN

1.3 工作原理框图

IP MODEM 结构框图如图 1-2 所示:

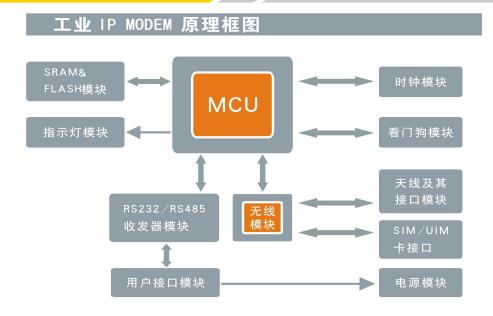


图 1-2 IP MODEM 结构框图

1.4 产品规格

硬件系统

,	
项目	内 容
CPU	工业级 32 位通信处理器
FLASH	512KB (可扩展至 8MB)
SRAM	256KB
ADC	12-bit

接口类型

项 目	内 容
串口	1 个 RS232 和 1 个 RS485 接口 (或 2 个 RS232), 内置 15KV ESD 保
	护, 串口参数如下:
	数据位: 5、6、7、8位
	停止位: 1、1.5、2位
	校验:无校验、偶校验、奇校验、SPACE 及 MARK 校验
	串口速率: 1200~230400bits/s
指示灯	具有电源、通信及在线指示灯
天线接口	标准 SMA 阴头天线接口,特性阻抗 50 欧
SIM/UIM 卡接口	标准的抽屉式用户卡接口,支持 1.8V/3V SIM/UIM 卡,内置 15KV ESD
	保护
电源接口	端子接口,内置电源反相保护和过压保护

供电

项目	内 容
标准电源	DC 12V/0.5A
供电范围	DC 5~36V

功耗 (因模块而异)

工作状态	功 耗	
通信状态	20~65mA@12VDC(2G:20~40 mA 4G:20~65mA)	
	20~95mA@9VDC(2G:30~45 mA 4G:20~95mA)	
待机状态	15~30 mA@12VDC 20~40 mA@9VDC	
休眠状态	5~17mA@12VDC 6~22mA@9VDC	

物理特性

项目	内 容
外壳	金属外壳,保护等级 IP30。外壳和系统安全隔离,特别适合工控现场应用
外形尺寸	91x58.5x22 mm (不包括天线和安装件)
重量	205g

其它参数

项目	内 容
工作温度	-35~+75°C (-22~+167°F)
储存温度	-40~+85°C (-40~+185°F)
相对湿度	95%(无凝结)

第二章 安装

2.1 概述

IP MODEM 必须正确安装方可达到设计的功能,通常设备的安装必须在本公司认可合格的工程师指导下进行。

➤ 注意事项: 请不要带电安装 IP MODEM。

2.2 开箱

为了安全运输,IP MODEM 通常需要合理的包装,当您开箱时请保管好包装材料,以便日后需要转运时使用。

IP MODEM 包括下列组成部分:

- ◆ IP MODEM 主机 1 个(根据用户订货情况包装)
- ◆ 保修卡 1 张
- ◆ 车载天线(SMA 阳头) 1 根
- ◆ 标配 12VDC/0.5A 电源 1 个
- ♦ RS232 三芯线 1条(或 RS485 线 1条,可选)

2.3 安装与电缆连接

外形尺寸:

IP MODEM 封装在金属机壳内,可独立使用,两侧有固定的孔位,方便用户安装,具体的尺寸参见下图。(单位:mm)

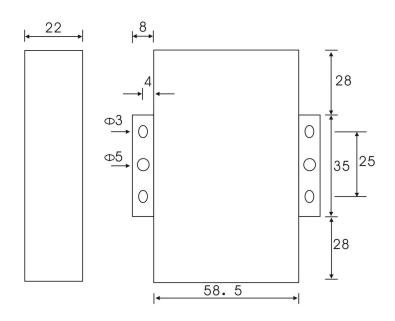


图 2-1 安指示图

天线及 SIM 卡安装:

IP MODEM 天线接口为 SMA 阴头插座。将配套天线的 SMA 阳头旋到 IP MODEM 天 线接口上,并确保旋紧,以免影响信号质量。

安装或取出 SIM 卡时, 先用尖状物插入 SIM 卡座右侧小黄点, SIM 卡套即可弹出。安 装 SIM 卡时, 先将 SIM 卡放入卡套, 并确保 SIM 卡的金属接触面朝外, 再将 SIM 卡套插 入抽屉中, 并确保插到位。

接口信号定义说明:

接口编号	接口名称	默认功能	扩展功能
1	PWR	电源输入正极	无
2	GND	系统地	无
3	RX1	RS232 数据接收	无
4	TX1	RS232 数据发送	无
5	GND	系统地	无
6	RX2	RS232 数据接收	
7	TX2	RS232 数据发送	
8	A	RS485 通讯接口正极	可定制 GPIO、脉冲输出、
			脉冲计数功能
9	В	RS485 通讯接口负极	可定制 GPIO、脉冲输出、
			脉冲计数功能

11/31

10	IO1	GPIO,可检测干节点信号和 3.3V 开	可定制脉冲输出、脉冲计
		关量信号。可输出 3.3V 开关量信号	数和模拟量输入功能。
11	IO2	GPIO,可检测干节点信号和 3.3V 开	可定制脉冲输出、脉冲计
		关量信号。可输出 3.3V 开关量信号	数和模拟量输入功能。
12	ADC1	模拟量输入功能(4~20mA 电流采集)	可定制 GPIO、脉冲输出、
			脉冲计数功能

注: (RX2 TX2)RS232 和(A B)RS485 同时只能支持一路在线。

安装电缆:

F2X16 V2 采用工业级端子接口,建议使用的电源线材和数据线材为 28-16AWG。标配 电源和数据线说明如下:

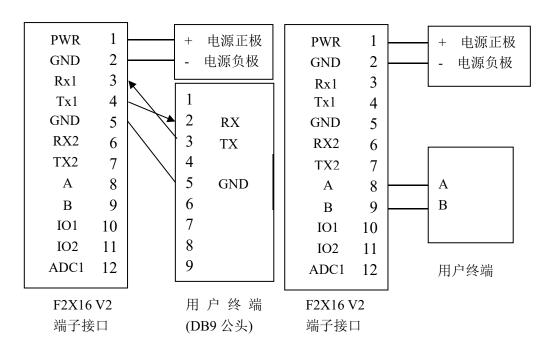
电源(输出12VDC/0.5A):

线材颜色	电源极性
黑白相间	正极
黑色	负极

RS232 线 (一端为 DB9 母头):

线材颜色	对应 DB9 母头管脚
棕色	2
蓝色	3
黑色	5

RS485 线 (可选):


线材颜色	信号定义
红色	RS485 正极(A)
黑色	RS485 负极 (B)

电源和数据接口线缆连接示意图:

连接方式: RS232

连接方式: RS485

2.4 电源说明

IP MODEM 通常应用于复杂的外部环境。为了适应复杂的应用环境,提高系统的工作 稳定性, IP MODEM 采用了先进的电源技术。用户可采用标准配置的 12VDC/500mA 电源 适配器给 IP MODEM 供电,也可以直接用直流 5~36V 电源给 IP MODEM 供电。当用户采 用外加电源给 IP MODEM 供电时,必须保证电源的稳定性(纹波小于 300mV,并确保瞬 间电压不超过 36V), 并保证电源功率大于 6W 以上。

推荐使用标配的 12VDC/0.5A 电源。

2.5 指示灯说明

IP MODEM 提供三个指示灯: "Power", "ACT", "Online"。指示状态如下:

指示灯	状态	说明	
Power	灭	设备未上电	
	亮	设备电源正常	
ACT	灭	没有数据通信	
	闪烁	正在数据通信	
Online	灭	IP MODEM 不在线	
	亮	IP MODEM 在线	

第三章 参数配置

3.1 配置连接

在对 IP MODEM 进行配置前,需要通过出厂配置的 RS232 串口线或 RS232-485 转换线 把 IP MODEM 和用于配置的 PC 连接起来,如下图:

3.2 参数配置方式介绍

IP MODEM 的参数配置方式有两种:

- ◆ 通过专门的配置软件: 所有的配置都通过软件界面的相应条目进行配置, 这种配置方式适合于用户方便用 PC 机进行配置的情况。
- ◆ 通过扩展 AT 命令(以下简称 AT 命令)的方式进行配置:在这种配置方式下, 用户只需要有串口通信的程序就可以配置 IP

MODEM 的所有的参数,比如 WINDOWS 下的超级终端,LINUX 下的 minicom,putty 等,或者直接由用户的单片机系统对设备进行配置。在运用扩展 AT 命令对 IP MODEM 进行配置前需要让 IP MODEM 进入配置状态,其步骤请参考附录。

下面以配置软件的方式为主详细介绍 IP MODEM 的各配置项。

注:对于参数配置涉及相关的应用扩展 AT 命令,请参见"F2X16 V2 应用扩展 AT 指令集"

3.3 参数配置详细说明

参数中有 HEX 格式的数据设置,

对于HEX 格式,那么数据必须为十六进制字符,且字符数不能为奇数。

如"12AB" 格式正确

"12A" 格式错误,字符数为奇数

"12G" 格式错误,非十六进制字符

14/31

3.3.1 配置工具运行界面

在串口参数设置栏内显示当前打开串口的串口参数,默认波特率为115200,连接设备 打开相应串口号,运行界面如下:

15/31

3.3.2 设备上电

设备上电后,参数配置软件使 IP MODEM 进入配置状态后会自动载入设备中的当前配置参数,并显示在右边的 "IP MODEM 设备参数配置"中,至此可以开始配置 IP MODEM中所有配置参数。注:对于 4G 模块,设备上电后进入配置状态会比较慢,约 40 秒。

3.3.3 工作模式

3.3.3.1 连接协议设置

针对不同的客户需求 IP MODEM 可以配置成多种协议模式。

注:不同的协议模式下,配置工具会根据当前的协议模式展现不同参数配置项,客户只需根据展现的参数配置项配置即可。

PORT 协议设置

心跳包采用 TCP 协议,数据通信也采用 TCP 协议,心跳包和数据通信采用同一个 TCP 连接,需配置 8 位设备 ID 号和手机号。

连接协议设置 工作协议: 设备ID:	手机号码:	13912345678
设备 ID	8 位设备	·ID 号

手机号码

设备的 SIM 卡号码,也可以配置为任意的 11 位数字

DCTCP 协议设置

电力相关通讯协议,采用 TCP 协议传输

连接协议设置 工作协议: 手机号码:	
手机号码	设备的 SIM 卡号码,也可以配置为任意的 11 位数字

DCUDP 协议设置

电力相关通讯协议,采用 UDP 协议传输

连接协议设置 工作协议 手机号码	: DCUDP
手机号码	设备的 SIM 卡号码,也可以配置为任意的 11 位数字

TRNS 协议设置

设备工作于普通的 GPRS MODEM 工作方式,此模式下, IP MODEM 可用于短信, CSD 和拨号上网

连接协议设置				
工作协议:	TRNS	· *		

SMSCLI 协议设置

IP MODEM 作为短信 DTU,工作数据通过短信的方式发到已绑定的手机上,同时接收已绑定的手机发送的内容,并将数据发送指定的外围接口上

连接协议设置 工作协议: 短信号码组1: 短信号码组2: 短信号码组3: 短信号码组4:	SMSCLI 15396235920
是否显示号码:	开 ▼ 16进制强制转文本: 关 ▼
短信号码组	绑定指定收发短信号码,最多支持5个手机号
是否显示号码	是否把来短信号码输出到指定的接口上

16 进制强制转文本

把 16 进制的数据转为文本格式收发

SMSSER 协议设置

IP MODEM 作为短信 DTU,工作数据通过短信的方式发到任意指定的手机上,但对发 送内容有要求,必须按指定的格式组帧发送,同时手机可以向短信 DTU 发送数据,短信 DTU 会将数据发送指定的外围接口上。

连接协议设置 工作协议: 是否显示号码:	SMSSER 开	*	16进制强制转文本:	开	•	Ì
是否显示号码		7	是否把来短信号码箱	命出到指定	的接口上	
16 进制强制转文本			把 16 进制的数据转	专为文本格	5 式收发	

自定义协议设置:客户端模式

支持 TCP 或 UDP 传输协议,同时支持自定义注册和心跳包

连接协议设置 工作协议: 设备模式: 注册及心跳: 包格式:	自定义 客户端模式 开启 Text		传输协议: TCP ▼	
注册包:			注册包回应:	
心跳包:			心跳包回应:	
传输协议			TCP 或 UDP	
16 进制强制转文本			把 16 进制的数据转为文本格式收发	
注册及心跳	若选择"	若选择"关闭"则无需配置以下参数,否则需要按要求配置参数		
包格式			Text:以下内容将以 text 格式传输	
		I	Hex: 以下内容将以 16 进制格式传输	
注册包			自定义注册包	
注册包回应		自定义注册包回应		
心跳包			自定义心跳包	
心跳包回应			自定义心跳包回应	

自定义协议设置:服务端模式

支持 TCP 或 UDP 传输协议

		Tanto ta 7477 ii moddii (2747)	
连接协议设置 工作协议: 设备模式: 监听端口:	自定义 ▼ 服务端模式 ▼ 5001	传输协议: TCP ▼	
传输协议	TCP 或 UDP		
监听端口		服务端监听端口号	

3.3.3.2 激活方式

通常情况下 IP MODEM 工作在永远在线的状态,随时保持数据传输通道的畅通,及时传 输应用数据。但在一些对无线通信数据流量特别敏感的场合,为了节省流量,平时可以让 IP MODEM 处于待机状态,一旦有应用数据需要传输的时候,通过 IP MODEM 的内部的激 活方式,使 IP MODEM 上线,建立数据传输通道,传输完成后挂断连接使其重新回到待机 状态, IP MODEM 支持如下几种激活方式。

自动

该方式下使 IP MODEM 永远在线

教活设置				
WITH IN THE	7/45	11 ES		
激活方式:	自动			

短信激活

通过给 IP MODEM 发送短信,只有收到绑定的手机号短信才能有效激活 IP MODEM 电话激活:通过电话呼叫 IP MODEM,使其建立数据通信链路

激活设置 激活方式: 短信激活号码:	短信激活 ▼		
短信激活号码		需绑定短信激活号码	

电话激活

别来电号码

通过电话呼叫 IP MODEM, 使其建立数据通信链路。可选择绑定电话号码。

若不绑定电话激活号码,则任何手机给 IP MODEM 打电话均可激活。

若选择绑定电话激活号码,则只有该绑定的电话激活号码才能激活,否则继续保持待机状态。 注: 选择绑定电话激活的手机号,一定要确保该手机号开通了来电显示业务,否则无法识

19/31

激活设置 激活方式: 电话激活号码:	电话激活 ▼	
电话激活号码	绑定电话激活号码	

串口激活

数据激活的方式,通过向 IP MODEM 串口发送特定的数据,使 IP MODEM 建立或者拆除 数据通信链路

激活设置 激活方式: 上线数据: 激活接口:	串口激活 ▼ don 串口1 ▼	下线数据: 数据格式:	doff Text	
上线数据		自定义上线数据或	太不配置 (为	7空)
	若定义了上线数	数据,则必须与定义	义的上线数据	居完全匹配方能激活,
		否则不	激活;	
	若不配置(为名	ど), 则任意数据均	可激活,注:	: 第一帧数据会丢弃,
		这种情况下设备	将进入深度	休眠
下线数据		自定义下线数据或	、 不配置(为	7空)
激活接口	只有配置为激活	5接口,才能激活设	设备,支持'	"串口1"和"串口2"
		两个外	围接口	
数据格式	激活数据	内容格式,支持"	Text"和"]	Hex"两种格式

I/O 激活: 休眠与唤醒

通过指定 I/O 口电平变化激活 IP MODEM,即:当 I/O 口输入高电平或悬空时,为激活状 态,输入低电平时,设备进入深度休眠状态

激活设置 激活方式: I/O激活方式: I/O选择:	I/0激活 休眠/唤醒 I/01				
休眠/唤醒	当所选择	的 I/O	输入低电平时,	设备将进入深度休眠	,输入高电平
			<u> </u>	即唤醒	

I/O

选择休眠/唤醒的 I/O 口,只有选择的 I/O 口才能进入休眠/唤醒模式

混合激活

同时支持短信,电话,串口和 I/O 激活方式的混合方式,只要满足其中一种的激活条件,IP MODEM 则被激活

激活设置 激活方式:	混合激活 ▼					
电话激活号码:		短信激活号码:				
上线数据:	don	下线数据:	doff			
激活接口:	串口2 ▼	数据格式:	Text ▼			
电话激活号码	若不绑定	电话激活号码,则(话均可	王何手机给 IP MODEM 打电激活。	 包		
	若选择绑定电	若选择绑定电话激活号码,则只有该绑定的电话激活号码才能激				
		活,否则继续	保持待机状态			
短信激活	只有收到绑定的手机号短信才能有效激活					
上线数据	自定义上线数据或不配置					
下线数据	自定义下线数据或不配置					
激活接口	只有配置为激	只有配置为激活接口,才能激活设备,支持"串口1"和"串口2"				
		两个外	围接口			
数据格式	激活数据	居内容格式,支持"	Text"和"Hex"两种格式			

3.3.3.3 调试信息

调试信息等级用于设备的软件调试或者简单的信息提示

调试信息 调试信息:	等級1 ▼ 信息輸出: 串口1 ▼
	关闭:没有任何调试信息输出
调试等级	等级 1:输出简单的提示信息
	等级 2:输出详细的调试信息
	串口1:信息从串口1输出

信息输出接口 串口 2: 信息从串口 2 输出 485: 信息从 485 接口输出

3.3.4 中心服务

3.3.4.1 中心服务器

IP MODEM 支持两种数据服务中心接收数据的方式:

一种是主备中心备份的方式,中心服务器数目为 1 时 IP MODEM 将工作于主副中心备份的方式,此时主中心和备份中心配置生效。当 IP MODEM 上线以后,它首先去连接主中心,如果连接成功 IP MODEM 将和主中心进行数据通信,否则 IP MODEM 会尝试连接备份中心进行数据通信。注:如果没有备份中心的话,请把备份中心和主中心配置成相同的值。

心服务器				
服务器数量:	1			
主服务器:	27, 154, 58, 226	3	端口:	9240
备服务器:	27, 154, 58, 226	3	端口:	9240

另一种是多中心的方式,中心数目大于 1 时 IP MODEM 将工作于多中心的方式,此时备份中心无效,主中心和中心 $1\sim5$ 有效。IP MODEM 最多可以支持到同时和 5 个中心进行数据通信,在这种模式下,IP MODEM 上线后会尝试和配置的多个数据中心建立连接,并进行数据通信。

心服务器	-			
服务器数量:	5			
服务器1:	27. 154. 58. 226	6	端口:	9240
服务器2:	27, 154, 58, 226	6	端口:	9239
服务器3:	166, 111, 8, 238	8	端口:	23
服务器4:	166, 111, 8, 238	8	端口:	23
服务器5:	166, 111, 8, 238	8	端口:	23

3.3.4.2 多中心连接参数设置

在实际应用中,如果由于中心服务器异常或者关闭服务器,导致 IP MODEM 始终无法建立连接, IP MODEM 为了确保永远在线而不断地尝试建立连接。

多中心连接参数	公 置
重连间隔器:	60
重连次数:	5
重连间隔	登录中心服务器失败时, IP MODEM 将按此重连间隔尝试重新登
	录中心服务器
重连次数	多次重新登录中心服务器失败,且达到此重连次数,将重新拔号处
	理

3.3.4.3 ICMP 方式链路检测

若开启 ICMP 方式链路检测,由将会以 ICMP 检测间隔定时向 ICMP 地址(一般为服务器端)发送 Ping 包数据来检测与 ICMP 地址端的通信是否正常,若连续检测 ICMP 失败达到 ICMP 检测数,则立即断开所有连接,重新拔号处理。

ICMP方式链路	5检测			
ICMP方式链路检测	₩: 开启 ▼			
ICMP地均	上: 120.42.46.98 ICMP检测间隔(秒): 30			
ICMP检测次数	ý: S			
ICMP 方式链路检测	开启或关闭			
ICMP 地址	Ping IP 地址			
ICMP 检测间隔	注: 间隔不要太短,建议 60 秒以上			
ICMP 检测次数	注:建议检测次数超过3次			

3.3.5 串口

IP MODEM 提供了三路独立数据通信接口,即:串口1、串口2和RS485,其中三路通信接口的任意通信接口都可以进入配置状态,这三路通信接口的通信默认波特率为115200、数据格式为8N1,即:8位数据位、无校验位和1个停止位。同时三路通信接口可以绑定中心服务器。

串口1		
波特率:	115200	
校验:	8N1	
通信绑定:	所有中心	
串口2和RS485		
波特率:	115200	-
校验:	8 N 1	
通信绑定:	所有中心	
串口 1	通信绑定到的数据	波特率: 1200~115200bps,(600,230400bps 可选) 校验:请参见具体的校验选项 定:若摆选择绑定所有中心或其中1个中心,则该串口接收 居将向中心发送,同时该串口也将接收中心下发的数据;若 团,则该串口不往中心发数据,同时也不接收中心下发的数 据,具体的通信绑定设置,请参见通信绑定选项
串口 2		同上
RS485	485 与目	串口2共用同一个硬件UART,所以参数以串口2的为准

3.3.6 无线拔号

3.3.6.1 PPP 拔号

PPP拨号 拨号号码: [APN接入点: [密码: [网络模式: [AUTO 🔻	查询模块搜网模式: 用户名: PPP认证: AUTO	
拔号号码	运营商	拔号号码	
	移动、联通	*99***1#、*99#、*98*1#	
	电信	#777	
	运营商		

	移	动、联通		cmnet, unin	et		
	电信			空			
	运营商			用户名/密码			
	移动、联通			空			
用户名和密码		电信		均为 card			
PPP 认证	PPP 认证方式,支持 AUTO、PAP 和 CHAP 三种认证方式			式			
查询模块搜网模式	仅针对 4G 通信模块,点击对话框设备将返回当前网络模式						
网络模式	网络模式选择						
				网络模式			
		AUTO		自动选择网络,	一般用于4	4G 模块	
		EVDO		电信 3G 网络			
	WCDMA 联通 3G 网络 TD-SCDMA 移动 3G 网络 CDMA 电信 2G 网络						
			移动 3G 网络				
				电信:	2G 网络		
		GSM		移动/联通网络			

3.3.6.2 PPP 重拔设置

PPP重拨设置 PPP重拨间隔: 最大重拨次数:	30 2
PPP 重拔间隔	PPP 拔号失败后,将按此重拔间隔重拔
最大重拔次数	PPP 连续重拔失败后,且达到此重拔次数,将重启设备

3.3.6.3 DNS 服务

当数据服务中心采用域名的时候,需要 DNS 服务器来解析域名对应的 IP 地址,数据服务中心的数量为 1 时,主中心和备份中心域名服务器分别用于解析主中心,备份中心域名对应的 IP 地址。

LAVIO AS WALLI MODEM KUM MEAL I
必须是 IP 地址
必须是 IP 地址

3.3.7 全局参数

3.3.7.1 PPP 方式链路检测

若开启 PPP 层检测,则将按 PPP 层检测间隔定时检测 PPP 层的链路是否正常,若连续检测链路异常达到一定次数,则立即释放 PPP 链路,重新建立 PPP 链路。

PPP方式链路检测 PPP层检测: PPP检测间隔(秒):	开启 ▼ 60 PPP检测次数: 5
PPP 层检测	开启或关闭
PPP 层检测间隔	注: 间隔不要太短,建议 60 秒以上
PPP 检测次数	注:建议检测次数超过3次

3.3.7.2 短信设置

短信设置 短信中心号码	:
短信中心号码	根据当地运营商情况来配置

3.3.7.3 数据帧设置

数据帧设置			
发送组包等待(MS):	20	MTV长度:	1450

26/31

数据帧间隔	用于判断串口数据帧是否接收完成,如果两字节间的时间间隔大于
	设定的值,IP MODEM 立即将当前接收到的数据发送到数据中心
MTU 长度	设置每个 TCP 数据包的最大传输数据量

3.3.8 设备管理

3.3.8.1 设备平台设置

若开启管理平台功能,设备将上报本身的一些设备信息,比如:网络信号、网络状态、流量等信息,同时管理平台了可以查询设备的相关信息,比如:读取或配置设备的参数、日志读取等功能。

	9901010 传输协议: TCP ▼	
服务器地址: 1	21.40.136.108 端口: 9692	
管理平台	开启或关闭	
平台 ID	8 位平台 ID 号,用于管理平台的设备 ID	
传输协议	TCP 或 UDP	
服务器地址	管理平台服务器地址	
端口	管理平台服务器端口号	

3.3.8.2 短信管理

若开启短信管理功能,则可以通过手机按照一定格式配置设备参数

短信管理 短信配置: 短信配置密码: 管理员号码:	开启 *** 123456 13599514095
短信配置	开启或关闭
短信配置密码	必须与短信配置密码匹配才能配置设备参数

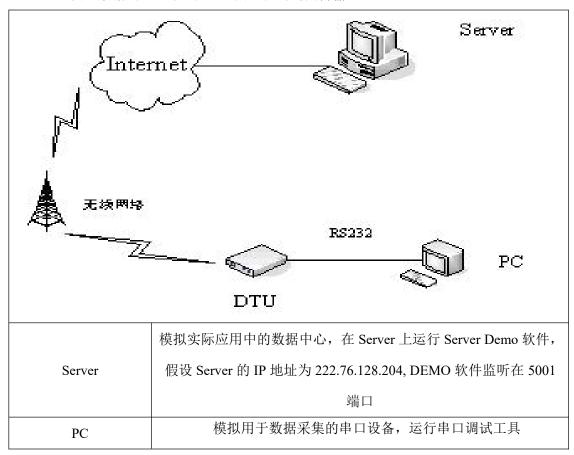
管理员号码

若配置管理员号码,则只有该管理号码的手机才能配置参数;若 为空,则任意手机号码均可能配置参数

3.3.9 其它功能项

登陆配置	下发配置	读取配置	读取日志	恢复出厂	获取版本		
退出登陆	导入配置	入配置 配置备份 读卡检测 检测信号 时间记					
登录配置	设名	备 处于工作状态	时,通过登录	配置使设备进	入配置状态		
下发配置		把相关参数下发给设备,使其立即生效					
读取配置		读取当前设备所有参数信息					
读取日志		读取设备存储的运行日志信息					
恢复出厂设置		恢复设备出厂时参数					
检测版本		查询设备软件和硬件版本号					
退出登录		从配置状态切换到工作状态					
导入配置		导入原配置参数,自动完成设备参数设置					
配置备份		保存当前设备的所有配置参数					
读取卡检测		检测当前 SIM 卡是否正常					
检测信号			查询当前手机	信号强度			
时间设置			配置设备的系	《 统时间			

第四章 数据传输试验环境测试


4.1 试验环境网络结构

由数据采集 PC 发送数据给 Server 的数据流程为:

PC 串口数据 → IP MODEM 串口 → IP MODEM TCP/IP 协议栈对数据进行 TCP/IP 封装

→ 发送到无线网络 →无线网络转发到 INTERNET →INTERNET 转发数据到 Server 。

Server 发送数据到 PC 的流程是上面过程的逆向传输。

4.2 测试步骤

(1)、 在 Server 上运行 DEMO 软件,在工具栏选择"启动",此时数据服务中心 DEMO 程序监听在 5001 端口(根据需要可以配置成其他端口)

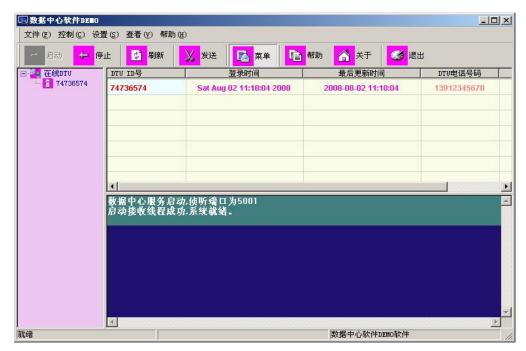
F2X16 V2 系列 IP MODEM 使用说明书

(2) 、配置 IP MODEM 参数数据服务中心的 IP 地址为 222.76.128.204,端口为 5001,配 置.

如下:

心服务器			
服务器数量:	1		
主服务器:	222. 76. 128. 204	端口:	5001
备服务器:	222, 76, 128, 204	端口:	5001

(3)、关闭 IP MODEM 配置工具,运行串口测试程序



(4)、确认 IP MODEM 中已经插入可用于数据通信的 SIM 卡,并重新上电 IP MODEM 使 其

正常工作。

- (5)、串口工具提示的信息表明 IP MODEM 与数据中心成功建立连接。
- (6)、通过串口工具给 Server 发送数据,数据中心 DEMO 上显示接收到的数据,说明串口 工具能够正确发送数据给数据中心。
- (7)、数据中心发送数据给串口工具。

以上测试表明,数据中心 DEMO 和串口工具能够双向进行数据通信